kub
Островок  здоровья

----
  
записная книжка врача акушера-гинеколога Маркун Татьяны Андреевны
----
 
 
 

Строение нервной системы

Нервная система имеет сложное строение. В ее состав входят нервные клетки (нейроны) с их отростками (волокнами), нейроглия и соединительнотканные элементы.


Н Е Р В Н А Я   К Л Е Т К А

Основной структурно-функциональной единицей нервной системы является нейрон (нейроцит). От тела нейрона отходит в одну сторону один длинный отросток (аксон), в другую - короткие ветвящие отростки - дендриты.

Строение нервной клетки

По дендритам нервные импульсы притекают к телу нейрона (проведение импульса афферентно, целлюлопетально), от ее рецептивных областей. Аксон проводит импульсы афферентно (целлюлофугально) - от клеточного тела и дендритов.

При описании аксона и дендритов исходят из возможности проведения импульсов только в одном направлении - так называемый закон динамической поляризации нейрона (проявляется в нейронных цепях).

В окрашенных срезах нервной ткани аксон узнают по отсутствию в нем тигроидного вещества, тогда как в дендритах, по крайней мере в начальной их части, оно выявляется.

Основные типы нервных клеток

В зависимости от числа отростков, отходящих от тела клетки, различают 3 типа нейронов

  • униполярные (псевдоуниполярные)
  • биполярные
  • мультиполярные

В зависимости от формы различают

  • пирамидные клетки
  • веретенообразные клетки
  • корзинчатые клетки
  • звездчатые клетки (астроциты)

В зависимости от размеров различают от очень маленьких до гигантских клеток, например гигантские клетки Беца в двигательной зоне коры.

Большинство нейронов в ЦНС представлены биполярными клетками, имеющими один аксон и большое количество дихотомически разветвляющихся дендритов. Такие клетки характерны для зрительной, слуховой и обонятельной систем - специализированных сенсорных систем.

Значительно реже обнаруживаются униполярные (псевдоуниполярные) клетки. Они находятся в мезэнцефальном ядре тройничного нерва и в спинномозговых узлах (ганглии задних корешков и чувствительных черепных нервов). Эти клетки обеспечивают определенные виды чувствительности - болевую, температурную, тактильную, а также чувство давления, вибрации, стереогнозии и восприятия расстояния между местами двух точечных прикосновений к коже (двумерно-пространственное чувство). Такие клетки, хотя и называются униполярными, на самом деле имеют 2 отростка (аксон и дендрит), которые сливаются вблизи тела клетки.

Истинно униполярные клетки обнаружены только в мезэнцефальном ядре тройничного нерва, которое проводит проприоцептивные импульсы от жевательных мышц в клетки таламуса.

В зависимости от выполняемых функций различают нейроны

  • рецепторные (чувствительные, вегетативные)
  • эффекторные (двигательные, вегетативные)
  • сочетательные (ассоциативные)

Связь между нервными клетками осуществляется через синапсы [показать] , в работе которых участвуют передатчики возбуждения - медиаторы.

Из цепи таких нейронов строятся рефлекторные дуги. В основе каждого рефлекса лежат восприятие раздражений, переработка его и перенос на реагирующий орган - исполнитель. Совокупность нейронов, необходимых для осуществления рефлекса, называется рефлекторной дугой. Строение ее может быть как простым, так и очень сложным, включающим в себя и афферентные, и эфферентные системы.

Афферентные системы представляют собой восходящие проводники спинного и головного мозга, которые проводят импульсы от всех тканей и органов. Система, включающая специфические рецепторы, проводники от них и их проекции в коре мозга, определяется как анализатор. Он выполняет функции анализа и синтеза раздражений, т. е. первичного разложения целого на части, единицы и затем постепенного сложения целого из единиц, элементов [Павлов И. П., 1936].

Эфферентные системы начинаются от многих отделов головного мозга: коры больших полушарий, подкорковых узлов, подбугорной области, мозжечка, стволовых структур (в частности, от тех отделов ретикулярной формации, которые оказывают влияние на сегментарный аппарат спинного мозга). Многочисленные нисходящие проводники от этих образований головного мозга подходят к нейронам сегментарного аппарата спинного мозга и дальше следуют к исполнительным органам: поперечно-полосатой мускулатуре, эндокринным железам, сосудам, внутренним органам и кожным покровам.

Нервные клетки обладают способностью воспринимать, проводить и передавать нервные импульсы. Кроме того существуют секреторные нейроны.

Секреторные нейроны синтезируют медиаторы, участвующие в их проведении (нейротрансмиттеры), ацетилхолин, катехоламины, индоламины, а также липиды, углеводы и белки. Некоторые специализированные нервные клетки обладают способностью к нейрокринии (синтезируют белковые продукты - окта-пептиды, например антидиуретический гормон, вазопрессин, окситоцин в клетках супраоптического и паравентрикулярного ядер гипоталамуса). Другие нейроны, входящие в состав базальных отделов гипоталамуса, вырабатывают так называемые рилизинг-факторы, которые оказывают влияние на функцию аденогипофиза.

Тело нервной клетки имеет свои особенности строения, которые обусловлены специфичностью их функции. Нервная клетка, как и всякая соматическая клетка, имеет оболочку, клеточное тело, ядро, центральный аппарат Гольджи, митохондрии и клеточные включения. Но, кроме этого, она содержит еще и некоторые специфические составные части: тигроидное вещество Ниссля и нейрофибриллы.

Тело нейрона, помимо внешней оболочки, имеет трехслойную цитоплазматическую мембрану, состоящую из двух слоев фосфолипидов и белков. Мембрана выполняет барьерную функцию, защищая клетку от поступления чужеродных веществ, и транспортную, обеспечивающую поступление в клетку необходимых для ее жизнедеятельности веществ [показать] .

Через плазматическую мембрану не только регулируется поступление и выход веществ, но и осуществляется обмен информацией между клеткой и внеклеточной средой. Мембраны нервных клеток содержат множество рецепторов, активация которых приводит к повышению внутриклеточной концентрации циклического аденозинмонофосфата (цАМФ) и циклического гуанозинмонофосфата (цГМФ), регулирующих клеточный метаболизм.

Ядро нейрона [показать] .

Пластинчатый комплекс (аппарат Гольджи) [показать] .

Лизосомы [показать] .

Митохондрии [показать] .

Среди других различных цитоплазматических включений (вакуоли, гликоген, кристаллоиды, железосодержащие гранулы и др.) часто находят желтовато-бурый пигмент - липофусцин. Пигмент этот откладывается в результате жизнедеятельности клетки. У молодых людей липофусцина в нервных клетках мало, в старческом возрасте много. Есть и некоторые пигменты черного или темно-коричневого цвета, подобные меланину (в клетках черной субстанции, голубого пятна, серого крыла и др.). Роль пигментов окончательно не выяснена. Однако известно, что уменьшение числа пигментированных клеток в черной субстанции связано со снижением содержания дофамина в ее клетках и хвостатом ядре, что приводит к синдрому паркинсонизма.


Н Е Й Р О Г Л И Я

Нейроглия - это клетки, окружающие нейроны. Она имеет огромное значение в обеспечении нормального функционирования нейронов, т.к. находится в тесных метаболических взаимоотношениях с ними, принимая участие в синтезе белка, нуклеиновых кислот и хранении информации. Кроме того, нейроглиальные клетки являются внутренней опорой для нейронов центральной нервной системы - они поддерживают тела и отростки нейронов, обеспечивая их надлежащее взаиморасположение. Таким образом нейроглия выполняет в нервной ткани опорную, разграничительную, трофическую, секреторную и защитную функции. Отдельным видам глии приписывают и специальные функции.

Все клетки нейроглии делятся на два генетически различных вида:

  • глиоциты (макроглия)
Нейроглия

К макроглии центральной нервной системы относят эпендимоциты, астроциты и олигодендроциты

Эпендимоциты. Они образуют плотный слой клеточных элементов, выстилающих спинномозговой канал и все желудочки мозга. Выполняют пролиферативную, опорную функцию, участвуют в образовании сосудистых сплетений желудочков мозга. В сосудистых сплетениях слой эпендимы отделяет цереброспинальную жидкость от капилляров. Эпендимальные клетки желудочков мозга выполняют функцию гематоэнцефалического барьера. Некоторые эпендимоциты выполняют секреторную функцию участвуя в процессах образования цереброспинальной жидкости и выделяя различные активные вещества прямо в полость мозговых желудочков или кровь. Например, в области задней комиссуры головного мозга эпендимоциты образуют особый "субкомиссуральный орган", выделяющий секрет, возможно, участвующий в регуляции водного обмена.

Астроциты. Они образуют опорный аппарат центральной нервной системы. Различают два вида астроцитов: протоплазматические и волокнистые. Между ними имеются и переходные формы. Протоплазматические астроциты лежат преимущественно в сером веществе центральной нервной системы и несут разграничительную и трофическую функции. Волокнистые астроциты располагаются главным образом в белом веществе мозга и в совокупности образуют плотную сеть - поддерживающий аппарат мозга. Отростки астроцитов на кровеносных сосудах и на поверхности мозга своими концевыми расширениями формируют периваскулярные глиальные пограничные мембраны, играющие важную роль в обмене веществ между нейронами и кровеносной системой [показать] .

Основная функция астроцитов - опорная и изоляция нейронов от внешних влияний, что необходимо для осуществления специфической деятельности нейронов.

Олигодендроциты. Это самая многочисленная группа клеток нейроглии. Олигодендроциты окружают тела нейронов в центральной и перферической нервной системе, находятся в составе оболочек нервных волокон и в нервных окончаниях. В разных отделах нервной системы олигодендроциты имеют различную форму. Изучение методом электронной микроскопии показало, что по плотности цитоплазмы клетки олигодендроглии приближаются к нервным и отличаются от них тем, что не содержат нейрофиламентов.

Функциональное значение этих клеток очень разнообразно. Они выполняют трофическую функцию, принимая участие в обмене веществ нервных клеток. Олигодендроциты играют значительную роль в образовании оболочек вокруг отростков клеток, при этом они называются нейролеммоцитами (леммоциты - шванновские клетки). В процессе дегенерации и регенерации нервных волокон олигодендроциты выполняют еще одну очень важную функцию - они участвуют в нейронофагии (от греч. фагос - пожирающий), т.е. удаляют омертвевшие нейроны путем активного поглощения продуктов распада.

К макроглии периферической нервной системе относятся

  • шванновские клетки - это специализированные олигодендроциты, синтезирующие миелиновую оболочку миелинизированных волокон. Они отличаются от олигодендроглии тем, что охватывают обычно только один участок отдельного аксона. Длина такого охвата не превышает 1 мм. Между отдельными шванновскими клетками формируются своеобразные границы, которые носят название перехватов Ранвье.

  • клетки-сателлиты - инкапсулируют нейроны ганглиев спинальных и черепных нервов, регулируя микросреду вокруг этих нейронов аналогично тому, как это делают астроциты.

  • микроглия - это мелкие клетки, разбросанные в белом и сером веществе нервной системы. Клетки микроглии являются глиальными макрофагами и выполняют защитную функцию, принимая участие в разнообразных реакциях в ответ на повреждающие факторы. При этом клетки микроглии сначала увеличиваются в объеме, затем митотически делятся. Измененные при раздражении клетки микроглии называются зернистыми шарами.


Н Е Р В Н Ы Е   В О Л О К Н А

Главной составной частью нервного волокна является отросток нервной клетки. Нервный отросток окружен оболочками, вместе с которыми он и образует нервное волокно.

В различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, поэтому в соответствии с особенностями их строения все нервные волокна делятся на две основные группы - миелиновые (мякотные волокна) и безмиелиновые (безмякотные) или, вернее, бедные миелином (тонкомиелинизированные волокна). Те и другие состоят из отростка нервной клетки, который лежит в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются нейролеммоцитами (шванновские клетки).

В центральной и периферической нервной системе преобладают мякотные волокна, в вегетативной нервной системе - безмякотные. В кожных нервах число безмякотных волокон может превышать число мякотных в 3-4 раза. Напротив, в мышечных нервах безмякотных волокон очень мало. В блуждающем нерве безмякотные волокна составляют почти 95%.

Безмиелиновые нервные волокна

Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа.

При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфтой. Оболочки леммоцитов при этом прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр (см. рис. Б). Немиелинизированные волокна вегетативной нервной системы оказываются покрытыми единичной спиралью мембраны леммоцита.

Оболочки нейролеммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, "одевающий" осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.

Миелиновые нервные волокна

Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 1 до 20 мкм. Они также состоят из осевого цилиндра, "одетого" оболочкой из нейролеммоцитов, но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, - миелиновый слой (см. рис. А) и наружный, тонкий, состоящий из цитоплазмы и ядер нейролеммоцитов - нейролемму.

Миелиновые оболочки содержат холестерин, фосфолипиды, некоторые цереброзиды и жирные кислоты, а также белковые вещества, переплетающиеся в виде сети (нейрокератин). Химическая природа миелина периферических нервных волокон и миелина центральной нервной системы несколько различна. Это связано с тем, что в центральной нервной системе миелин образуется клетками олигодендроглии, а в периферической - леммоцитами (шванновскими клетками). Эти два вида миелина обладают и различными антигенными свойствами, что выявляется при инфекционно-аллергической природе заболевания.

Миелиновая оболочка нервного волокна местами прерывается, образуя так называемые перехваты Ранвье. Перехваты соответствуют границе смежных нейролеммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой. Миелиновая оболочка обеспечивает роль электрического изолятора. Кроме того, предполагается ее участие в процессах обмена осевого цилиндра.

Миелинизация периферического нервного волокна осуществляется леммоцитами (олигодендроцитами в центральной нервной системе и шванновскими клетками в периферической). Эти клетки формируют отросток цитоплазматической мембраны, который спиралевидно обертывает нервное волокно, при этом формируется мезаксон. При дальнейшем развитии мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону - миелиновый слой. Может сформироваться до 100 спиральных слоев миелина правильной пластинчатой структуры (рис.).

В образовании миелиновой оболочки и структуре миелина ЦНС и периферической нервной системы (ПНС) имеются отличия. При формировании миелина ЦНС один олигодендроглиоцит имеет связи с несколькими сегментами миелина нескольких аксонов; при этом к аксону примыкает отросток олигодендроглиоцита, расположенного на некотором расстоянии от аксона, а внешняя поверхность миелина соприкасается с внеклеточным пространством.

Шванновская клетка при образовании миелина ПНС формирует спиральные пластинки миелина и отвечает лишь за отдельный участок миелиновой оболочки между перехватами Ранвье. Цитоплазма шванновской клетки вытесняется из пространства между спиральными витками и остается только на внутренней и наружной поверхностях миелиновой оболочки. Эта зона, содержащая оттесненную сюда цитоплазму нейролеммоцитов (шванновских клеток) и их ядра, называется наружным слоем (нейролемма) и является периферической зоной нервного волокна.

Миелиновая оболочка обеспечивает изолированное, бездекрементное (без падения амплитуды потенциала) и более быстрое проведение возбуждения вдоль нервного волокна (сальтаторное проведение возбуждения, т. е. прыжками, от одного перехвата Ранвье к другому). Имеется прямая зависимость между толщиной этой оболочки и скоростью проведения импульсов. Волокна с толстым слоем миелина проводят импульсы со скоростью 70-140 м/с, в то время как проводники с тонкой миелиновой оболочкой со скоростью около 1 м/с и еще медленнее - "безмякотные" волокна (0,3-0,5 м/с), т.к. в безмиелиновом (безмякотном) волокне волна деполяризации мембраны идет не прерываясь по всей плазмолемме.

Осевой цилиндр нервных волокон состоит из нейроплазмы - цитоплазмы нервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат много нитевидных митохондрий, аксоплазматических пузырьков, нейрофиламентов и нейротрубочек. Рибосомы в аксоплазме встречаются очень редко. Гранулярный эндоплазматический ретикулум отсутствует. Это приводит к тому, что тело нейрона снабжает аксон белками; поэтому гликопротеиды и ряд макромолекулярных веществ, а также некоторые органеллы, такие как митохондрии и различные пузырьки, должны перемещаться по аксону из тела клетки. Этот процесс называется аксонным, или аксоплазматическим, транспортом [показать] .

Определенные цитоплазматические белки и органоиды движутся вдоль аксона двумя потоками с различной скоростью. Один - медленный поток, движущийся по аксону со скоростью 1-3 мм/сут, перемещает лизосомы и некоторые ферменты, необходимые для синтеза нейромедиаторов в окончаниях аксонов. Другой поток - быстрый, также направляется от тела клетки, но его скорость составляет 5-10 мм/ч (примерно в 100 раз выше скорости медленного потока). Этот поток транспортирует компоненты, необходимые для синаптической функции (гликопротеиды, фосфолипиды, митохондрии, дофамингидроксилаза для синтеза адреналина).

Дендриты обычно гораздо короче аксонов. В отличие от аксона дендриты дихотомически ветвятся. В ЦНС дендриты не имеют миелиновой оболочки. Крупные дендриты отличаются от аксона также тем, что содержат рибосомы и цистерны гранулярного эндоплазматического ретикулума (базофильное вещество); здесь также много нейротрубочек, нейрофиламентов и митохондрий. Таким образом, дендриты имеют тот же набор органоидов, что и тело нервной клетки. Поверхность дендритов значительно увеличивается за счет небольших выростов (шипиков), которые служат местами синаптического контакта.

Все нервные волокна заканчиваются концевыми аппаратами, которые получили название нервных окончаний.


С О Е Д И Н И Т Е Л Ь Н А Я   Т К А Н Ь

Соединительная ткань представлена в центральной нервной системе оболочками головного и спинного мозга, сосудами, проникающими вместе с мягкой мозговой оболочкой в вещество мозга, и сосудистое сплетение желудочков.

В периферических нервах соединительная ткань образует оболочки, одевающие нервный ствол (эпиневрий), отдельные пучки его (периневрий) и нервные волокна (эндоневрий). В оболочках проходят сосуды, питающие нерв.

Особенно велико значение сосудисто-соединительнотканного аппарата в защите нервной ткани от различных вредностей и борьбе c вредностями, уже проникшими в центральную нервную систему или в периферический нерв.


Скопление в спинном и головном мозге тел нейронов и дендритов составляет серое вещество мозга, а отростки нервных клеток образуют белое вещество мозга. Тела нервных клеток формируют скопления и называются ядрами в центральной нервной системе и ганглиями (нервными узлами) - в периферической.

В мозжечке и в больших полушариях клетки образуют слоистые (стратифицированные) структуры, называемые корой.

КЛЕТОЧНАЯ   СТРУКТУРА   (ЦИТОАРХИТЕКТОНИКА)   КОРЫ   БОЛЬШИХ   ПОЛУШАРИЙ

Кора покрывает всю поверхность больших полушарий. Ее структурными элементами являются нервные клетки с отходящими от них отростками - аксонами и дендритами - и клетки нейроглии.

В коре полушарий большого мозга человека насчитывают около 12-18 млрд. нервных клеток. Из них 8 млрд. составляют крупные и средних размеров клетки третьего, пятого и шестого слоев, около 5 млрд. приходится на мелкие клетки различных слоев. [показать]

Основная масса клеток коры состоит из элементов трех родов:

  • пирамидных клеток
  • веретенообразных клеток
  • звездчатых клеток

Полагают, что пирамидные и веретенообразные клетки с длинными аксонами представляют преимущественно эфферентные системы коры, а звездчатые - преимущественно афферентные. Считают, что клеток нейроглии в головном мозге в 10 раз больше, чем ганглиозных (нервных) клеток, т. е. около 100-130 млрд. Толщина коры варьирует от 1,5 до 4 мм. Общая поверхность обоих полушарий коры у взрослого человека составляет от 1450 до 1700 см2.

Особенностью структуры коры больших полушарий является расположение нервных клеток в шесть слоев, лежащих друг над другом.

  1. первый слой - lamina zonalis, зональный (краевой) слой или молекулярный - беден нервными клетками и образован в основном сплетением нервных волокон
  2. второй - lamina granularis externa, наружный зернистый слой - называется так из-за наличия в нем густо расположенных мелких клеток, диаметром 4-8 мк,имеющих на микроскопических препаратах форму круглых, треугольных и многоугольных зерен
  3. третий - lamina pyramidalis, пирамидальный слой - имеет большую толщину, чем первые два слоя. В нем содержатся пирамидные клетки разной величины
  4. четвертый - lamina dranularis interna, внутренний зернистый слой - подобно второму слою, он состоит из мелких клеток. Этот слой в некоторых участках коры больших полушарий взрослого организма может отсутствовать; так, например, его нет в моторной области коры
  5. пятый - lamina gigantopyramidalis, слой больших пирамид (гигантские клетки Беца) - от верхней части этих клеток отходит толстый отросток - дендрит, многократно ветвящийся в поверхностных слоях коры. Другой длинный отросток - аксон - больших пирамидных меток уходит в белое вещество и направляется к подкорковым ядрам или к спинному мозгу.
  6. шестой - lamina multiformis, полиморфный слой (мультиформный) - состоит из клеток треугольной формы и веретенообразных

По функциональному признаку нейроны коры больших полушарий могут быть подразделены на три основные группы.

  1. Сенсорные нейроны коры больших полушарий, так называемые звездчатые нейроны, которые в особенно большом количестве находятся в III и IV слоях сенсорных областей коры. На них оканчиваются аксоны третьих нейронов специфических афферентных путей. Эти клетки обеспечивают восприятие афферентных импульсов, приходящих в кору больших полушарий из ядер зрительных бугров.

  2. Моторные (эффекторны) нейроны - клетки, посылающие импульсы в лежащие ниже отделы мозга - к подкорковым ядрам, стволу мозга и спинному мозгу. Это большие пирамидные нейроны, которые впервые описал В. А. Бец в 1874 г. Они сконцентрированы в основном в V слое моторной зоны коры. В осуществлении эффекторной функции коры принимают участие и некоторые веретенообразные клетки.

  3. Контактные, или промежуточные, нейроны - клетки, осуществляющие связь между различными нейронами одной и той же или различных зон коры. К их числу относятся мелкие и средние пирамидные и веретенообразные клетки.


СТРУКТУРА   МИЕЛИНОВЫХ   ВОЛОКОН   (МИЕЛОАРХИТЕКТОНИКА)   КОРЫ   БОЛЬШИХ   ПОЛУШАРИЙ

Миелоархитектонически кора головного мозга человека также делится в основном на шесть слоев, соответствующих указанным клеточным слоям. Миелоархитектонические слои еще в большей степени, чем слои цитоархитектонические, распадаются на подслои и крайне изменчивы в различных участках коры.

В сложной структуре нервных волокон коры больших полушарий различают

  • горизонтальные волокна, соединяющие различные участки коры, и
  • радиальные волокна, связывающие серое и белое вещество.

Приведнное описание клеточной структуры коры является в известной мере схематическим, поскольку имеются значительные вариации в степени развития указанных слоев в различных областях коры.


 
 

Куда пойти учиться



 

Виртуальные консультации

На нашем форуме вы можете задать вопросы о проблемах своего здоровья, получить поддержку и бесплатную профессиональную рекомендацию специалиста, найти новых знакомых и поговорить на волнующие вас темы. Это позволит вам сделать собственный выбор на основании полученных фактов.

Медицинский форум КОМПАС ЗДОРОВЬЯ

Обратите внимание! Диагностика и лечение виртуально не проводятся! Обсуждаются только возможные пути сохранения вашего здоровья.

Подробнее см. Правила форума  

Последние сообщения



Реальные консультации


Реальный консультативный прием ограничен.

Ранее обращавшиеся пациенты могут найти меня по известным им реквизитам.

Заметки на полях


навязывание услуг компании Билайн, воровство компании Билайн

Нажми на картинку -
узнай подробности!

Новости сайта

Ссылки на внешние страницы

20.05.12

Уважаемые пользователи!

Просьба сообщать о неработающих ссылках на внешние страницы, включая ссылки, не выводящие прямо на нужный материал, запрашивающие оплату, требующие личные данные и т.д. Для оперативности вы можете сделать это через форму отзыва, размещенную на каждой странице.
Ссылки будут заменены на рабочие или удалены.

Тема от 05.09.08 актуальна!

Остался неоцифрованным 3-й том МКБ. Желающие оказать помощь могут заявить об этом на нашем форуме

05.09.08
В настоящее время на сайте готовится полная HTML-версия МКБ-10 - Международной классификации болезней, 10-я редакция.

Желающие принять участие могут заявить об этом на нашем форуме

25.04.08
Уведомления об изменениях на сайте можно получить через раздел форума "Компас здоровья" - Библиотека сайта "Островок здоровья"

Островок здоровья

 
----
Чтобы сообщить об ошибке на данной странице, выделите текст мышью и нажмите Ctrl+Enter.
Выделенный текст будет отправлен редактору сайта.
----
 
Информация, представленная на данном сайте, предназначена исключительно для образовательных и научных целей,
не должна использоваться для самостоятельной диагностики и лечения, и не может служить заменой очной консультации врача.
Администрация сайта не несёт ответственности за результаты, полученные в ходе самолечения с использованием справочного материала сайта
Перепечатка материалов сайта разрешается при условии размещения активной ссылки на оригинальный материал.
© 2008 blizzard. Все права защищены и охраняются законом.



 
----